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Abstract

A self-consistent Ornstein-Zernike approximation (SCOZA) for the direct correlation

function, embodying consistency between the compressibility and the internal en-

ergy routes to the thermodynamics, has recently been quantitatively evaluated for a

nearest-neighbor attractive lattice gas and for a �uid of Yukawa spheres, in which the

pair potential has a hard core and an attractive Yukawa tail. For the lattice gas the

SCOZA yields remarkably accurate predictions for the thermodynamics, the correla-

tions, the critical point, and the coexistence curve. The critical temperature agrees to

within 0.2% of the best estimates based on extrapolation of series expansions. Until

the temperature is less than 1% of its critical value, the e�ective critical exponents

do not di�er appreciably from their estimated exact form, so that the thermodynam-

ics deviates from the correct behavior only in a very narrow neighborhood of the

critical point. For the Yukawa �uid accurate results are obtained as well, although

a comparison as sharp as in the lattice gas case has not been possible due to the

greater uncertainty a�ecting the available simulation results, especially in regard to

the position of the critical point and the coexistence curve.

KEY WORDS: coexistence curve; correlation function; critical point; lattice gas;

Ornstein-Zernike theory; thermodynamic consistency; Yukawa �uid.



1 Introduction

It is well known that the most popular liquid state theories based on an integral equa-

tion for the two-particle correlation function su�er from a lack of thermodynamic

consistency: that is, di�erent routes to the thermodynamics (typically, the compress-

ibility, the virial, and the internal-energy routes) yield di�erent results [1]. This is

quite a serious �aw. It is not surprising then that several integral equations have

been modi�ed in such a way that consistency between di�erent routes is enforced.

The generalized mean spherical approximations (GMSA) of Stell and his colleagues

represent one such approach that has proved useful in treating ionic and polar �uid

models [2], but it has not been fully developed for simple �uids. For such �uids,

self-consistent approaches include the modi�ed hypernetted chain (MHNC) and the

Zerah-Hansen (also known as HMSA) integral equation. While yielding remarkably

accurate thermodynamics over most of the phase diagram, these latter theories fail

nevertheless to converge in the neighborhood of the critical point, so that the top of

the coexistence curve is missing [3, 4].

In the present work we show that the requirement of thermodynamic consistency

can be used to get a closed theory which gives very good thermodynamics, including

an accurate phase diagram. This approach is a self-consistent Ornstein Zernike ap-

proximation (SCOZA) formulated some time ago [5] that has been recently applied

to speci�c systems by solving numerically the resulting partial di�erential equation

(PDE). The systems that have been studied so far are the nearest-neigbor attractive

lattice gas (i.e. the ferromagnetic Ising model) and a �uid of particles interacting via

a spherically symmetric pair potential consisting of a hard-core repulsive term plus

an attractive Yukawa tail. The work on the lattice gas discussed here supplements

that already reported in [6], to which we refer the reader for further details.
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2 Theory

The SCOZA deals with a �uid of particles interacting by a two-body potential v(r)

that consists in a hard core repulsion and a longer ranged attractive contribution w(r).

If g(r) is the two-body radial distribution function at r, c(r) is the Ornstein-Zernike

two-body direct correlation function, and � is the hard-core diameter, the SCOZA in

its simplest form amounts to setting:

g(r) = 0 r < �

c(r) = A(�; �)w(r) r > � ;

(1)

where A(�; �) is a function of the density � and of the inverse temperature � =

1=kBT , T being the absolute temperature and kB the Boltzmann constant. The

condition on g(r) (the so-called core condition) is exact and stems from the hard-

core repulsion, while the expression of c(r) is clearly an approximation, and implies

that c(r) has always the same range as the potential: this is usually referred to

as the Ornstein-Zernike ansatz. Eq. (1) resembles the well-known mean-spherical

approximation (MSA) [1], except that in the present case the function A(�; �) is not

�xed a priori as in the MSA, where one has A � ��. Instead, it has to be determined

in such a way that the compressibility and the internal energy route lead to the same

thermodynamics. It is worthwhile stressing that consistency is not enforced after the

thermodynamics has been �rst obtained through one or the other route; instead, the

thermodynamics must be determined self-consistently. The consistency condition can

be expressed as:

@
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= �

@2

@�2
(�u) ; (2)

where �red is the reduced compressibility as given by the zero-wavelength limit of

the structure factor, and u is the excess internal energy per particle, obtained by

integrating the pair interaction weighted by the radial distribution function. While

it is always true that Eqs. (1) and (2) give rise to a closed equation for A(�; �), the

calculation is greatly simpli�ed in those cases when the link between the quantities
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�red and u can be written explicitly in closed form. This is actually the case with the

lattice gas and the Yukawa �uid considered here: Eq. (2) becomes then a non-linear

di�usive PDE that can be integrated numerically.

3 Lattice gas

In the case of the lattice gas, the interaction potential v(r) is given by:

v(ri � rj) =

8><
>:
+1 ri = rj

�1 i, j nearest neighbors

0 otherwise ;

(3)

where i and j label two generic lattice sites and the strength of the nearest-neighbor

interaction w0 has been taken equal to unity. Temperatures will then be measured in

units of w0. According to Eq. (1), the only two non-vanishing values of c(r) for the pair

potential (3) are the on-site c0 and the nearest-neighbor c1. The thermodynamics and

the correlations can then be conveniently described [7] by the variable z = q�c1=(1�

�c0), q being the coordination number of the lattice, and by the lattice Green's function

P(z) [8]:

P (z) =
Z �

0

d3k

�3
1

1�
z

p
�(k)

; (4)

where �(k) is the Fourier transform of the nearest-neighbor potential and p is a

coe�cient whose value depends on the particular lattice. If we introduce the quantities

y = [P (z)�1]=[zP (z)], ' = �(1��)y and the function F such that z = F (y), we �nd

that Eq. (2) can be cast in the following form:

(1 � y)F 0(y)� F (y)[1� F (y)]

[1� yF (y)]2
@'

@�
= q [�(1 � �)]2
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!
: (5)

The function '(�; �) is proportional to the excess contribution to the internal energy

per unit volume with respect to the mean-�eld approximation. The choice of '(�; �) as

the unknown function has been determined by the fact that the resulting equation (5)

lends itself to numerical integration by an implicit method [9] without making the
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computation very heavy. The use of such a method is highly recommended in the

case of the SCOZA PDE, in order to avoid the problem of numerical instability,

which would become particularly severe in the critical and sub-critical region. To

integrate (5) a set of boundary and initial conditions is also needed. One �nds easily

that '(�; � = 0) = '(� = 0; �) = 0. Moreover, since Eq. (5) preserves particle-hole

symmetry, the integration with respect to the density can be carried out in the interval

(0; 1=2), with the further boundary condition that '(�; �) is symmetric with respect

to � = 1=2. Particle-hole symmetry also implies that the correct value of the critical

density �c = 1=2 is obtained in SCOZA.

The critical temperature predicted by Eq. (5) has been located by the divergence of

the isothermal compressibility on the critical isochore. The results are remarkably ac-

curate: for instance, in the case of a simple cubic lattice we obtain �c = 0:88503, while

the best estimate obtained by extrapolation of series expansions [10] is �c = 0:88662:

the error is less than 0:2%. Similar accuracy is obtained for the body-centered and the

face-centered cubic lattices as well [6]. A �t on a log-log plot for the compressibility

on the critical isochore and on the critical isotherm shows that the e�ective critical

exponents (the slopes of such plots) approach the mean-spherical values of  = 2 and

� = 5 respectively as the critical point is approached, but they deviate substantially

from the true e�ective exponents only very close to critical, when the reduced tem-

perature, t = jT � Tcj=Tc, and density, m = j�� �cj=�c, are less than 10�2. Similarly,

while the true speci�c heat at constant volume cV diverges at critical, the SCOZA cV

takes on a high but �nite value. For example, for the simple cubic lattice, it remains

a bit higher than the true value until t � 10�5. Remarkably, for t down to 10�5 the

e�ective critical exponent �e� describing the coexistence curve shape appears to be

approaching a value much closer to the true value of 0:33 than the mean-spherical

value of 0:5. This is shown in Fig. 1. We also note that both the overall thermody-

namics and the correlations are faithfully reproduced. This can be seen, for instance,

4



in Fig. 2, where the structure factor at a temperature T = 1:5 is compared with the

results from a closed-form approximant [11]; the agreement is very good.

4 Yukawa hard-core �uid

The pair potential of the Yukawa hard-core �uid considered here is:

v(r) =

8<
:

+1 r < 1

�
e�z(r�1)

r r > 1 ;
(6)

where z is the inverse range of the interaction and we have set both the hard-sphere

diameter � and the strength of the attractive tail � equal to unity. This amounts to

using the reduced quantities �� = ��3, T � = kT=�. It has been shown [12] that for

such a potential any closure of the form (1), irrespective of the detailed form of the

function A(�; �), allows one to express in closed form the internal energy per particle

u as a function of the inverse reduced compressibility 1=�red. If we regard 1=�red as

the unknown function f(�; �), Eq. (2) can then be cast in the form:

@f

@�
= �

@

@�

"
C(�; f)

@f

@�
+D(�; f)

#
; (7)

where C(�; f) and D(�; f) are prescribed functions of � and f . Eq. (7) can be

integrated numerically by an implicit algorithm [13] similar to the one used for

Eq. (5). The low-density boundary condition corresponds to the perfect gas, so one

has f(� = 0; �) = 1. At high density, that is for �� ' 1, the MSA for the internal

energy has been used, and f has then be determined by using Eq. (2) as an evolution

equation. It has also been checked that the system is quite insensitive to the speci�c

choice of the high-density boundary condition. Finally, at � = 0, f must be given

by its hard-sphere value. It should be observed that the closure (1) implies that the

hard-sphere contribution to c(r) vanishes outside the core, so that the treatment of

the hard-sphere gas in the present approximation coincides with the Percus-Yevick

(PY) one. While this is exact in the lattice-gas case, it is not fully satisfactory for a

continuous �uid, especially at high density. In order to achieve a better description of
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the hard-sphere system, a further improvement, which the authors have been devel-

oping, consists of adding to the expression for c(r) given by (1) outside the core a non

vanishing contribution cHS(r). For instance, cHS(r) can be a second Yukawa tail, with

amplitude and range determined in such a way that the resulting thermodynamics of

the hard-sphere �uid is given by the Carnahan-Starling equation of state [1]. This gen-

eralization appears to be fully feasible, since many of the algebraic manipulations valid

for a c(r) with a Yukawa tail still hold when c(r) is a combination of two Yukawas [14].

If one is interested only in the thermodynamics of the �uid rather than its structure,

one can estimate the e�ect of using a more accurate hard-sphere theory by simply

replacing the PY hard-sphere contribution by the Carnahan-Starling contribution [1]

in the initial condition of Eq. (7). This is what has been done to obtain the results

reported here. Of course, on theoretical grounds, the as-yet-to-be evaluated version

of SCOZA that allows for a further contribution cHS(r) to c(r) for r > � in Eq. (1),

will yield the most reliable of our Yukawa-sphere results. The critical point has been

located by �nding the highest temperature at which there is a divergence of the com-

pressibility. For an inverse range z = 1:8 we obtain ��c = 0:315, T �

c = 1:216. Describing

the hard-sphere contribution by the PY equation yields ��c = 0:308, T �

c = 1:201. In

Table I the critical density and temperature are compared with the results from dif-

ferent theories [4] and Monte Carlo (MC) simulations [15, 16]. The agreement with

the simulation results seems quite satisfactory, although the relatively large discrep-

ancy between the two simulations does not allow for as sharp a comparison as in

the lattice-gas case. A similar consideration holds for the coexistence curve, which is

reported in Fig. 3, together with the MC results. It is worthwhile observing that the

coexistence curve given by the SCOZA extends up to the critical point, which is not

the case with other theories [4]. In Table II the compressibility factor is compared

with the results from MC simulations [17] and from a numerical evaluation [18] of a

result which is the lowest order gamma-ordered approximation (LOGA) as well as the
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optimized random-phase approximation (ORPA). The LOGA/ORPA theory is known

to be very good in the liquid-state regime [19].

One of the most interesting aspects of the Yukawa hard-core �uid is the e�ect of

the range of the attractive potential (determined by the parameter z of Eq. (6)) upon

the thermodynamics of the �uid. This manifests itself in two quite separate ways

� the location of the critical point, which shifts to higher and higher densities as z

increases, and the behavior of the e�ective critical exponents. The smaller z is, the

closer one expects the critical exponents to approach their mean-�eld values as one

approaches the critical point before crossing over to their limiting values. We observe

both e�ects in our SCOZA results. Space limitations preclude their discussion here,

but we intend to give these results in future publications.

5 Conclusions

Results for the nearest-neighbor attractive lattice gas and preliminary results for the

Yukawa �uid suggest that the SCOZA is a quite reliable liquid-state theory, which

promises to yield both overall accurate results for the thermodynamics and the correl-

ations, and a precise location of the critical point and of the coexistence curve. The

spherical-model character of its critical behavior is detectable only in a very narrow

region above the critical point. This approach can also be extended to a variety of

di�erent models: for instance, the theory has been recently formulated also for a �uid

in a porous medium [20] and for the D-vector model, i.e. a spin system with spin

dimensionality D greater than one [21].
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TABLE I

CRITICAL CONSTANTS FOR THE HARD-SPHERE + YUKAWA FLUID

(z = 1:8)

MCz MC� SCOZAy MSA�

comp HMSA� MHNC�

��c 0.294 0.313 0.315 0.308 0.36 0.28

T �

c 1.192 1.178 1.216 1.031 1.25 1.21

y Using Carnahan-Starling hard-sphere contribution (see text).

z Ref. [15]. � Ref. [16]. � This work (from the compressibility route). � Ref. [4].
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TABLE II

COMPRESSIBILITY FACTOR PV=NkT FOR THE

HARD�SPHERE + YUKAWA FLUID (z = 1:8)

T � �� MCy SCOZA� LOGA=ORPA
�

en

2.0 0.4 1.08 1.123 1.118

2.0 0.6 2.04 1.981 1.974

2.0 0.8 4.27 4.436 4.432

1.5 0.4 0.69 0.671 0.663

1.5 0.6 1.21 1.225 1.214

1.5 0.8 3.31 3.336 3.330

y Ref. [17]. � Using Carnahan-Starling (see text). � Ref. [18] (energy route).
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FIGURE CAPTIONS

Fig. 1 E�ective exponent �e� for a simple cubic lattice gas with a nearest-neighbor

potential as a function of the logarithm of the reduced temperature t = jT � Tcj=Tc.

�e� is de�ned as the local slope of logm vs. log t, where m = j� � �cj=�c is the

reduced density.

Fig. 2 Structure factor S(k) of the simple cubic lattice gas along the direction kx =

ky = kz as a function of the norm of k at a temperature T = 1:5. Crosses:

SCOZA. Solid curve: approximant [11].

Fig. 3 Coexistence curve of the Yukawa �uid in the ���T � plane for an inverse range

parameter z = 1:8. Solid curve: SCOZA with Carnahan-Starling reference-

system thermodynamics. Crosses: MC simulation by Smit and Frenkel [15].

Squares: MC simulation by Lomba and Almarza [16].
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